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EQUATIONS OF STATE OF PIEZOCERAMIC SHELLS* 

N.N. ROGACHEVA 

The reduction of three-dimensional equations of electroelasticitytotwo-dimensional 
equations of piezoceramic shells is performed by an asymptotic method /l/ for the 
case of preliminary polarization along one of the families of coordinate lines of 
the middle surface. It is shown that for shells covered completely with electrodes 
on which a potential difference is maintained,the complete problem breaks down into 
a mechanical and an electrical problem, where the mechanical problem differs qualit- 
atively from theories based on the Kirchhoff-Love type of hypotheses. For shells 
not covered with electrodes and loaded by a mechanical surface load, the complete 
problem does not generally allow of separation into mechanicalandelectrical pro- 
belems, in which connection the system of differential equations is of tenth order. 

1. Let us select a system of tri-orthogonal coordinates %, a2, y in such a manner thatthe 
lines a,, a.2 would coincide with the lines of middle surface curvature, while the y-lines 
would be orthogonal. In the coordinate system chosen we write the equations of electroelast- 
icity of a piezoceramic shell which has first been polarized along the %-lines /2/: 

The piezoeffect equations 

The electrostatic equations 

~+~~+~.~=~ 

E,= -~~,E,=--+.$ 

The strain-displacement formulas 

(1.2) 

(1.3) 

Here and henceforth, two different equations can be obtained from each with subscripts i and 
j, one by setting i = 1, j = 2, and the other by setting f = 2, j = 1. 
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The nonsymmetric tensor associated with the symmetric tensor Uij, uirr usa by the formulas 

Ti = ajaii, Tij = UiUfj, 
TiB = ajaio, T1 = w2u93 (1.4) 

is introduced in (1.1). 
To shorten the writing in the piezoeffect equations, the followina notationis introduced 

for the constants characterizing the electrical and mechanical properties of the shellmaterial: 

The notation in (l.l)- (1.5) is Vi, vB are displacements, Ai are coefficientsofthe first 
quadratic form of the middle surface, Ri are its principal radii of curvature, sI1*, sl**, slnE, 

sss E, b-ME are the elastic compliances for a zero electrical field, Al, d,,, d,, are piezo- 
electrical constants, d, E32 are the dielectric permittivities for zero voltages, E is 
the electrical field intensity vector, and D is the electrical induction vector. 

The equilibrium equations have the same form as in the theory of nonelectrical shells, 
hence, we construct just the electroelasticity relationships. 

2. Let us examine a shell not covered with electrodes, on whose facial surfaces the fol- 
lowing surface load is given 

=i-qf 
(2.1) 

In the no-electrode case, the electrical conditions have the following form: 

D, t*=+h = 0 (2.2) 

To obtain conditions on the external shell surface, just the plus signofthedoublesigns 
in (2.1) and (2.2) must be taken, since conditions on the inner surface are obtained if the 
minus is taken. 

We take the following asymptotic representation for the desired quantitiesoftheelectro- 
elastic state under consideration: 

vi = $lJi*, v 3 = $v3*, z< = T**, zij = rij* (2.3) 
T$ = r)'-'73*, Ti3 = V11-'Ti3*, Es = 7l'-'E$* 
Ei = Ei,, D3 = q2-3s+cD3.+_ Di = D,*,q = q2-+& 

c = 0, 0 c< s <':'s; c = a + 2s. 'Is < s < 1 

Here 'IJ is the relative semi-thickness of the shell, and s, according to the terminology used 
in /l/, is the index of variability of the electroelastic state. 

By means of (2.3) the desired quantities are replaced by quantities with asterisks which 
have the identical asymptotic order as q-f 0. The asymptotic representation (2.3) taken re- 

sults in a non-contradictory theory in a first approximation. Moreover, (2.3) are confirmed 
in simple solutions /3/. 

Let us execute the scale expansion along coordinate lines usual for asymptotic methodsin 
the piezoelasticity equations (Ris the shell characteristic dimension): 

ai = q'R&, y = q'R5 (2.4) 

The coordinates Ei and 5 are introduced in such a manner that differentiation with re- 
spect to them would not result in a substantial increase in the functions desired. Formulas 
(2.4) mean that the desired quantities will increase -'-fold under differentiation with 

respect to the coordinates ei and n-'-fold under diffe:entiation with respect to y. 
We substitute (2.3) and (2.4) into (l.l)- (1.4). Consequently, we obtain the following 

equations 

- ppt +ciajEl* (2.5) 
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The order of each term of the equation with respect to the principal termsinthesameequation 
is given, in the formulas written down, by the factor n to a non-negative power, ahead of it. 

We construct the two-dimensional equations of state to the accuracy of quantitiesoforder 
e where 

e = 0 (q-2’) (2.6) 

Integrating (2.5) successively with respect to 6 to the accuracy of quantities of order 
(2.61, we obtain an expansion of the following form: 

P, = 5, claiP, i (2.7) 
i=il 

where P, should be understood to be any of the desired quantities Vi*, . . .,$ and n, ai take 
the following values for each of these quantities 

a,, = 1; n = 1, a, = nl-Zr+c for vi*, ei*, mit, ti+, Q*, Di, 12.8) 

n = 1, a, = q '-'for ~a*, gi*, n = 0 for Ei, 

n = 2, a, = 1, a2 = qlwwc for vib*, E,, 
n = 3, a, = 1, ax = ql++', a, = q*-Wae for r3* 
n = 3, a, = a, = ql-‘, a2 = 1 for D, 
n = 3, a, = a, = qe-ps, a3 = qrartc for 9 

Let us substitute the expansions (2.7) and (2.8) into (2.5). After equating coefficients of 
identical powers of 5 we obtain the following equations 

riro=G (%ei,o -t- %jej,o) - Fpir~,o - c&,0 (2.9) 

ttj, o=-$ $C+,o + mj,o) - %El,o 
=4r 

I 
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The quantities ei,o, gi,~, mi,eI r%,l are found according to (2.5) inwhichtheasterisks should 
be replaced by zero or one, respectively, while the following formulas hold for ei,l, gi,,: 

Let us turn to quantities used in the theory of shells in the equations obtained. Using 
(2.7) and (2.31, we find that the displacements vi, 10 of the shell middle surface are related 
to the three-dimensional displacements as follows 

t&i = vil;=o = 'I' vi,O, W = - v,lcza= -T)< US,0 (2.10) 

The forces and moments are expressed in terms of the stresses by using (2.7), (2.8) and (2.3): 

-i-h i-h 
Ti= l lady= 2hziI,, Sij, 1 rijdy= 2krij,o 

--h -h 

+h 

Gi = _- 

s 

ai,, dy = _ q’-26+’ F q, 

-A 

v 

Hij = 
s 

~~,y dy = ,1-O,++ T{~,, 

--h 

+h 

(2.11) 

Using (2.10),(2.3) ,(2.9), we express the quantities vi,,, v8,,, ei,@, . . .,eitl in terms of the 
angles of rotation and the strain components of the middle surface 

ei,0 = Ret, TTZi,O = R63j, #i,O = q-‘-‘yf (2.12) 

vi,l = -_11'-YSy,, vQ,1 = R (SI?Qll + SXP n& -I- 
R (s~&~ -+ ~rr%z~~)~~ -b REP(dsl - sleEcl - s~:>~c,) 

mi.2 = rl -E+*sRa i% 2) 

e*, I= rp=R%q $ Tpt2s -grc E 
i 

Sl&l -b- &a) &I 4- (&I~ t ~f!,n~~) ez + Ei”) (da1 - .& -&Q)] 

The angles of rotation wj,yi and the middle-surface strain components Et, 0, xi, 'c axe expressed 
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in terms of the middle-surface displacements by means of formulas from /l/. 
As result of transforming (2.9) and taking account of (2.11) and (2.12), we obtain form- 

ulas in the shell theory terminology, which we separate into two groups. Among the firstgroup 

are the following 

Here and henceforth, the quantities with numerical superscript in parentheses are the co- 
efficients of the desired quantities in expansionsinpowersof y. Theseexpansions areobtained 
if cis replaced by y in (2.7) and (2.8) by using (2.4) and taking (2.3) into account. Ihey 
have the form 

T* = 2h (n*iEi + nijej) - 2hCiE*(O) - {hpi (q_?+ - qs-)} 

Sij=% (U-d~&$“‘) 

(2.13) 

P I; $oyiP(i) (2.14) 

where the number n is determined by (2.8) for each of the desired quantities. Small terms of 
the order of q' in comparison to the principal terms are in braces everywhere, 

In addition to (2.131, the equilibrium equations and strain-displacement formulas should 
be included in (2.13). We consequently obtain a closed system of tenth order differential 
equations in the unknown mechanical and electrical quantities. We refer all the remaining 
equations to the second group 

tpl) = - & E$) (k = 0, 1,2) 

According to (2.151, after the solution of the system of equations of the first group has 
been found, the electrical quantities not in the first group can be predetermined by using 
direct operations. 

Let us note that the complete problem does not generally allow separation into mechanical 
and electrical problems. Some particular cases are the exception, for instance, for the axi- 
symmetric problem /3/, all the electrical quantities in (2.15) can successfully be expressed 
in terms of forces, whereupon the complete problem separates into mechanical and electrical 
problems. In this case the equations of the mechanical problem differ from the equations of 
the theory of non-electrical shells only by the meaning of the coefficients in the equations 
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of state adhead of the strain components. 

3. Let us examine a piezoelectric shell with facial surfaces covered completely with 
electrodes on which the value F'of the potential is given V(V is a function only of the time) 

$lly-ih = tv 

It is assumed that there is no mechanical surface load 

(3.1) 

We take the following asymptotic representation for the desired quantitiesofthe electro- 
elastic state 

01 = 7)'-"+$*, U* = Uz*, 0 (u2 IV_@) = ql'-s+c (3.3) 
OQ _ qII-2iCXu .3*, ri = Ti*, Tij = tij* 
5is = ‘1’-“‘i3*, t, = qL-ct3*, E, = q-‘~~* 
II, = $z+c, Di = Di*, Da = ~-ID 3* 

where C, 8, rl have the same meaning as before. In the case under consideration, it follows 
from (1.2) and (3.1) that the tangential electrical field intensity vector components E, and 

E, are zero. 
Let us make the change of variables (2.4) by substituting the asymptotic (3.3) into the 

initial equations, we then integrate with respect to 5 to the accuracy of (2.6), whereupon we 
obtain an expansion of the form (2.7), of which we present here only,the formulas for the dis- 
placements and the principal stresses 

Comparing (3.4) with the analogous formulas of the theory of non-electrical shells /l/, we 
note that the expansions obtained for the stresses have almost the same form as the appropri- 
ate expansions in the case of a pure bending state. The formulas for the displacements VP* 
and VQ* have no analogs in the theory of non-electrical shells. The greatest of the displace- 
ment components is vz,l. This is explained by the fact that the domains oriented alongthelines 
a, tend to occupy a position normal to the middle surface upon imposition of the electrical 
field, consequently, the quantities ri,lr Tij.1 by which the moments are determined, are maximal 
in the principal stress. Performing the computations in the same sequence as in Sect.2, we 
obtain the following electroelasticity relationships for the shell with electrodes: 

Together with the equilibrium equations and the strain-displacement formulas, the relation- 
ships (3.5) comprise a close system of eighth-order differential equations thatdonotcontain 
unknown electrical quantities. Since the Kirchhoff-Love hypotheses are not satisfied for the 
theory constructed, the formulas to go from the forces and moment to the stresses and fromthe 
middle surface displacements to the three-dimensional displacements are qualitatively differ- 
ent from the corresponding formulas of the classical theory of non-electrical shells. The 
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formulas (2.14) hold for the expansions of the desired quantities in the variable y wherethe 
number n is given in the following manner: 

n = 1 forv,; n = 0 for Es,D, 

n = 2 for v,, vg, Ti, tij, Di; n = 3 for ti3, ~3 

After the mechanic problem has been solved in theory of shell terminology,itispossible 
to go over to the three-dimensional desired quantities by using the following formulas: 

Vi(O) = &, u&O) = - u, ur(l) = --yr 

v:1' = d& - y2, 

{v:’ = (s12E ml + .hEM el + (bErh2 + s1i~n.2~) ed 

UP’ = + Wls (bEnn + s1a~n21) Es 

snEnu + snEw - PI)] kld,tsEi) 

F -& $ .&- + (sI?~ + smEw) (z + 2) + 2 - pz (2 + +] kldlsEgj 

$J)_ ;; [+d”‘), $‘=- &f$ 

Then we calculate the electrical quantities by means of the stresses found: 

D#‘) = ellTE,, D,(O) = d16z1&‘), D,(l) = d,,r#) 

i 
Df’=d,, T;;‘--&“:‘)] 

( 
DJ“) = d31r1(0) + d,,z$‘) + {d31@J)) 

D,(l) = dzLTl(l) + d33rl(l) 

i 0:’ = d& + d & - i 
Tp’ 

41 H, + dss R, +) ) + d&q 

As before, those terms and equations thatmustbediscarded are in the braces if an errorofthe 
order of ?l' is allowed in the theory. 

It is seen from the formulas obtained that the complete problem separates into mechanical 
and electrical problems in the case under consideration, where the electrical quantities are 
calculated after the mechanical problem has been solved by using algebraic operations. 

4. Electroelasticity relationships have been obtained above to the accuracyofquantities 
of the order of q'-". It can be shown that this accuracy is optimal, as in the theory of non- 
electrical shells /l/: the theory is complicated qualitatively for an attempt at its improve- 
ment, the order of the system of differential equation rises, the need occurs for the introduc- 
tion of an elasticity relationship connecting the transverse force and the transverse shear, 
etc. 

The terms and equations in thebracespermit raising the accuracy of the computation to 
quantities O(@-p0 for an electroelastic state with low variability (s <'la), which is import- 
ant in solving practical problems since medium-thickness piezoelectrical shells are used, as 
a rule, in engineering. For high indices of variability (s>~/~) the small terms in the braces 
are outside the accuracy taken, hence, they must be discarded. 
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If terms O(+) are neglected in the electroelasticity relationships constructed, and 
simplifications are introduced that hold for the axisymmetric problem for meridian polariza- 
tion, then we obtain the electroelasticity relations that agree with those deduced earlier in 
/3/. 

Let us note that in this particular case, the simplified transfer formulas for shells 
covered completely by electrodes do not permit determination of the quantity ug@) (for s= O,+,, 
is of the same order as us+,). Moreover, for small s it is impossible to determinethestresses 
in terms of forces since the principal stresses along the normal coordinate vary according to 
a square law, and the formulas taken in shell theory provide only a linear law of stress vari- 
ation over the thickness. 
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